
PyPi Package Example Documentation
Release 1.0.0

Paul Vincent Craven

Mar 02, 2020

Contents

1 Documentation 3
1.1 Core Files and Directories . 3

1.1.1 Setup File . 3
1.1.2 Setup File In Detail . 3

1.2 Git . 5
1.3 GitHub and GitHub Community . 6

1.3.1 Readme . 6
1.3.2 Code of Conduct . 6
1.3.3 Contributing . 6
1.3.4 License . 6
1.3.5 Bug Report Template . 6
1.3.6 Pull Request Template . 6

1.4 Building and Deployment . 7
1.4.1 Requirements . 7
1.4.2 Setup . 7
1.4.3 Make File . 7
1.4.4 Build Directory . 7
1.4.5 Distribution Directory . 7
1.4.6 Additional Build Info . 7

1.5 Package Documentation Files . 8
1.5.1 Building API Docs From Code . 8
1.5.2 Read The Docs . 9
1.5.3 Files and Directories for Documentation . 9

1.6 Badges . 9
1.7 Testing . 10

1.7.1 PyTest . 10
1.7.2 Code Coverage . 10
1.7.3 Pre-Commit . 11

1.8 Continuous Integration . 11
1.8.1 Travis CI . 11

1.9 Getting Code Formatted Correctly . 11
1.10 Versioning . 12
1.11 Tips . 12
1.12 Example Directory Tree . 12

2 Application Programming Interface 15

i

2.1 API . 15

3 Notes 17

Python Module Index 19

Index 21

ii

PyPi Package Example Documentation, Release 1.0.0

Getting started creating a Python package is very simple. Your project only needs two files, and a directory.

Module vs. Package

A Python module is any file with Python code in it. A Python package has multiple Python modules. A package
has a __init__.py file in a directory of Python modules.

Once you’ve got your package started, you can expand on it and add more features, testing, documentation, and more.

This documentation shows how to build a modern Python package. If you already have a package and want to know
what each file does, see Example Directory Tree.

The source for this example is at:

https://pypi-package-example.readthedocs.io/

Contents 1

https://pypi-package-example.readthedocs.io/

PyPi Package Example Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Documentation

1.1 Core Files and Directories

There are only two required files, and one required directory:

• /pypi_package_example/ This is the main project directory where all the Python source code goes. The
directory should be named the same as your package name. Check the PyPi Package Index to make sure there
isn’t a conflict before picking your package name.

• /pypi_package_example/__init__.py This is the starting file for your project. It is run when you
import your package. It should not do much processing, it should just load in all the functions and classes that
you plan on using in your project.

1.1.1 Setup File

• /setup.py or /setup.cgf. This specifies how your project is to be built, and other meta information about
the project. The /setup.py seems more common based on my limited experience, but in 2016 PEP 518 was
provisionally accepted which specifies a different setup method, to be stored in a file called setup.cfg.

1.1.2 Setup File In Detail

When you run setup.py, you can get a full list of commands:

Listing 1: setup.py options

(venv) C:\pypi_package_example>python setup.py --help-commands
Standard commands:

build build everything needed to install
build_py "build" pure Python modules (copy to build directory)
build_ext build C/C++ extensions (compile/link to build directory)
build_clib build C/C++ libraries used by Python extensions
build_scripts "build" scripts (copy and fixup #! line)

(continues on next page)

3

https://pypi.org/
https://www.python.org/dev/peps/pep-0518/

PyPi Package Example Documentation, Release 1.0.0

(continued from previous page)

clean clean up temporary files from 'build' command
install install everything from build directory
install_lib install all Python modules (extensions and pure Python)
install_headers install C/C++ header files
install_scripts install scripts (Python or otherwise)
install_data install data files
sdist create a source distribution (tarball, zip file, etc.)
register register the distribution with the Python package index
bdist create a built (binary) distribution
bdist_dumb create a "dumb" built distribution
bdist_rpm create an RPM distribution
bdist_wininst create an executable installer for MS Windows
check perform some checks on the package
upload upload binary package to PyPI

Extra commands:
bdist_wheel create a wheel distribution
build_sphinx Build Sphinx documentation
flake8 Run Flake8 on modules registered in setup.py
compile_catalog compile message catalogs to binary MO files
extract_messages extract localizable strings from the project code
init_catalog create a new catalog based on a POT file
update_catalog update message catalogs from a POT file
alias define a shortcut to invoke one or more commands
bdist_egg create an "egg" distribution
develop install package in 'development mode'
dist_info create a .dist-info directory
easy_install Find/get/install Python packages
egg_info create a distribution's .egg-info directory
install_egg_info Install an .egg-info directory for the package
rotate delete older distributions, keeping N newest files
saveopts save supplied options to setup.cfg or other config file
setopt set an option in setup.cfg or another config file
test run unit tests after in-place build
upload_docs Upload documentation to PyPI

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
or: setup.py --help [cmd1 cmd2 ...]
or: setup.py --help-commands
or: setup.py cmd --help

The setup.py file itself can be pretty simple. As it is Python, you can keep adding onto it as your project gets more
complex and you need more customization. See the setup.py documentation for an idea of what you can do with that
file.

Listing 2: setup.py

1 #!/usr/bin/env python
2

3 from os import path
4 from setuptools import setup
5

6 VERSION = "1.0.0"
7

8 if __name__ == "__main__":
9

(continues on next page)

4 Chapter 1. Documentation

https://github.com/pvcraven/pypi_package_example/blob/master/setup.py

PyPi Package Example Documentation, Release 1.0.0

(continued from previous page)

10 # List of all the required packages.
11 install_requires = [
12 "arcade",
13]
14

15 # Grab the long description out of the README
16 fname = path.join(path.dirname(path.abspath(__file__)), "README.rst")
17 with open(fname, "r") as f:
18 long_desc = f.read()
19

20 # Call the setup function with our setup parameters.
21 # This kicks off the build.
22 setup(
23 name="arcade",
24 version=VERSION,
25 description="Sample Python Package",
26 long_description=long_desc,
27 author="Paul Vincent Craven",
28 author_email="paul.craven@simpson.edu",
29 license="MIT",
30 url="https://pypi-package-example.readthedocs.io/en/latest/",
31 install_requires=install_requires,
32 packages=["pypi_package_example"],
33 python_requires=">=3.6",
34 classifiers=[
35 "Development Status :: 5 - Production/Stable",
36 "Intended Audience :: Developers",
37 "License :: OSI Approved :: MIT License",
38 "Operating System :: OS Independent",
39 "Programming Language :: Python",
40 "Programming Language :: Python :: 3.6",
41 "Programming Language :: Python :: 3.7",
42 "Programming Language :: Python :: 3.8",
43 "Programming Language :: Python :: Implementation :: CPython",
44 "Topic :: Software Development :: Libraries :: Python Modules",
45],
46 test_suite="tests",
47 package_data={"arcade": ["examples/images/*.png"]},
48 project_urls={
49 "Documentation": "https://pypi-package-example.readthedocs.io/en/latest/",
50 "Issue Tracker": "https://github.com/pvcraven/pypi_package_example/issues

→˓",
51 "Source": "https://github.com/pvcraven/pypi_package_example",
52 },
53)

1.2 Git

If you are using git version control, you need a list of files and directories for git to ignore. This are saved in the
.gitignore file.

GitHub maintains a great list of sample .gitignore files in there collection of useful .gitignore templates.

My .gitignore for Python typically looks like this: .gitignore.

1.2. Git 5

https://github.com/github/gitignore
https://github.com/pvcraven/pypi_package_example/blob/master/.gitignore

PyPi Package Example Documentation, Release 1.0.0

Note: Please teach your students not to check in SSH keys! Also make sure they don’t check in the results of a build.
Go over a typical .gitignore so they understand why things should be, and should not be checked in.

1.3 GitHub and GitHub Community

If you host your files on GitHub, they have recommended supporting files for documentation and building a commu-
nity.

1.3.1 Readme

/README.md or /README.rst This file is shown at the bottom of your GitHub page. It (along with most other
files) can be in Markdown or Restructured Text format. Look at the bottom of the pypi_package_example GitHub site
for this website’s Read Me. You can click on the README.rst to see this file, and hit the ‘Raw’ button to see the
source.

Badges - Badges are small graphics you can stick on your site to visually list information about your project. The
README is a good spot for them. See this project’s README.rst. For more info see Badges.

1.3.2 Code of Conduct

• /CODE_OF_CONDUCT.md Public projects should have a code of conduct. Add it before you need one, not
after. See GitHub’s Code of Conduct suggestions, and the Contributor Covenant for open source projects.

1.3.3 Contributing

• /CONTRIBUTING.md Encourage contributions to your project by telling interested developers how to get
started.

1.3.4 License

• /license.md Post a license for how people can use the software. See Choose a License for help in selecting
one. If other people contribute to your project, they do so under the license you publish. Changing the license
on your project should involve the buy-in of all contributors. This isn’t easy with a popular open-source project,
so choose wisely the first time.

1.3.5 Bug Report Template

• /.github/ISSUE_TEMPLATE/bug_report.md When people report a bug, GitHub will use the contents
of this file as a template. This file, and similar ones like pull_request_template.md have a few different
places where GitHub will look for them. I like putting them in .github rather than pollute the root directory.
You can also have multiple templates, depending on if it is a bug, feature request, etc.

1.3.6 Pull Request Template

• /.github/PULL_REQUEST_TEMPLATE/pull_request_template.md When developers create a
pull request a bug, GitHub will use the contents of this file as a template.

6 Chapter 1. Documentation

https://github.com/pvcraven/pypi_package_example
https://github.com/pvcraven/pypi_package_example/blob/master/README.rst
https://github.com/pvcraven/pypi_package_example/blob/master/README.rst
https://help.github.com/en/github/building-a-strong-community/adding-a-code-of-conduct-to-your-project
https://www.contributor-covenant.org/
https://choosealicense.com/

PyPi Package Example Documentation, Release 1.0.0

1.4 Building and Deployment

1.4.1 Requirements

• /requirements.txt This should be a simple list of every package required to develop your project. The
packages required to run the project go in setup.py. This file makes it easy for automatic setup of virtual
environment, and automated builds.

• Python programs often use a virtual environment in a folder (usually named venv). Python has a lot of other
tools like pipenv and more trying to solve this same problem. Last year, PEP 582 was approved that will use a
__pypackages__ directory that, if it exists, will be used instead of global packages.

1.4.2 Setup

• /setup.py This is one of the two required files. You can use the setup file to build the project. For more info,
refer back to Core Files and Directories.

1.4.3 Make File

• /make.bat, make.sh, make.py There are so many different commands for building, testing, and deploy-
ment, I like having a “make” file with a instructions to make the process easier.

1.4.4 Build Directory

• /build/ This is automatically created by setup.py when you build.

1.4.5 Distribution Directory

• /dist/ This is automatically created by setup.py when we build wheels.

1.4.6 Additional Build Info

• The command to build your project is python setup.py build

• bdist / wheels - If you have the wheel package installed, you can create a one-file distribution of your project. If
the project is pure Python, that wheel can work on any platform. If you’ve got platform-specific libraries, you
can make wheels for each platform. See Python’s packaging projects for more info. The command to create a
wheel is python setup.py bdist_wheel. This only works if you have the wheel package installed.

• Manifest: https://packaging.python.org/guides/using-manifest-in/

• Twine - Once your project is packaged in a wheel, you can upload it to the PyPi repository for other people to
use. This is done with the twine module. It is simple as:

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

• AWS - If you deploy on your own server, Amazon Web Services has a great Python-based command-line
interface as part of the awscli package.

1.4. Building and Deployment 7

https://wheel.readthedocs.io/en/stable/
https://packaging.python.org/tutorials/packaging-projects/
https://packaging.python.org/guides/using-manifest-in/
https://github.com/pypa/twine
https://aws.amazon.com/cli/

PyPi Package Example Documentation, Release 1.0.0

1.5 Package Documentation Files

Documenting your project is important if you want anyone else to use it. Documentation is done using a markup
language that is then converted into HTML for your website.

To convert from a markup language to HTML we use a tool called Sphinx. Sphinx is a popular tool for creating web
documentation for Python projects. It is part of a larger group of tools known as Static Site Generators. You can see a
list of top static site generators at StaticGen.

Markdown (.md) and RestructuredText (.rst) - Static sites are normally written using either markdown or restructured
text. Markdown is more popular in the whole eco-system of markup. RestructuredText is more popular for Python
documentation. Restructured Text also allows inclusion of external files, which is GREAT for maintaining code
samples. See examples of this at:

http://arcade.academy/examples

To get started with Sphinx, there’s a sphinx-quickstart command that can build out some of the files to get started.
Personally, I find it easier to start with an old project and copy/modify from there.

1.5.1 Building API Docs From Code

Sphinx can pull documentation stored in comments from Python files. If the Python code looks like this:

Listing 3: Documented Python Code Listing

1 def my_function():
2 """
3 Sample function that prints Hi
4 """
5 print("Hi")
6

7

8 def my_addition_function(a: int, b: int):
9 """

10 Sample function that adds two integers.
11

12 Our documentation starts off with a one-line sentence. We can follow it up
13 with multiple lines that give a more complete description.
14

15 :param int a: First number to add.
16 :param int b: Second number to add.
17

18 :return: The two numbers added together.
19 :rtype: int
20 :raises: None
21

22 Then we can follow it up with an example:
23

24 :Example:
25

26 >>> result = my_addition_function(10, 15)
27 >>> print(result)
28

29 .. note::
30 This is just a silly example. Don't really use this function to add
31 numbers.
32

(continues on next page)

8 Chapter 1. Documentation

http://www.sphinx-doc.org/en/master/
http://staticgen.com
https://www.markdownguide.org/basic-syntax
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
http://arcade.academy/examples
https://www.sphinx-doc.org/en/master/usage/quickstart.html

PyPi Package Example Documentation, Release 1.0.0

(continued from previous page)

33 """
34 return a + b

Then, in the restructured text file add code like the following:

.. automodule:: pypi_package_example
:members:
:undoc-members:
:inherited-members:
:show-inheritance:

And finally get output that looks like this: API

Note how it also links to the source of the code!

1.5.2 Read The Docs

Do you have an open-source project and don’t want to spend a lot of time hosting a website and keeping everything
up-to-date? ReadTheDocs will take any GitHub project and automatically build a website for you using Sphinx. They
will inject some ads into it to help pay for it.

ReadTheDocs supports custom URLs. They also support webhooks that will auto-build the documentation every time
you push a new version to GitHub.

1.5.3 Files and Directories for Documentation

• /doc/ Put your documentation in this directory

• /doc/index.rst This is your main landing page

• /doc/_static This directory will be included in your main project. I use it for a custom css file.

• /doc/images It is a good idea to keep images separate from content.

• /pypi_package_example/examples If you want example code, I suggest putting it in a subdirectory to
your project. Don’t put it in the doc directory. This makes it easy to run your example with a command like:

python -m pypi_package_example/examples/my_example

1.6 Badges

Badges are a fun, visual way of showing information about your projects. Here are some badges for this project:

You can get the source to copy/paste into your own project from ShieldsIO. This website has TONS of badges to look
through and see what fits your project.

1.6. Badges 9

https://readthedocs.org/
http://makeapullrequest.com
http://www.firsttimersonly.com/
https://travis-ci.org/pvcraven/pypi_package_example
https://coveralls.io/github/pvcraven/pypi_package_example?branch=master
https://shields.io/

PyPi Package Example Documentation, Release 1.0.0

1.7 Testing

1.7.1 PyTest

There are several testing frameworks that exist for helping with unit tests. One of the most popular for Python is
PyTest. PyTest makes it easy to write and run unit tests.

Typically I create a directory called “tests” for all of the unit tests. I put the “tests” directory in my root folder, but if
you want to run tests as part of the package once it has been installed, then you’ll need to include it as a subdirectory
in the folder with the source code.

Files that contain tests should start with test_ and contain functions that start the same way:

/tests/test_*.py

An example test file:

Listing 4: test_my_addition_function.py

1 import pypi_package_example
2

3

4 def test_my_addition_function():
5 assert pypi_package_example.my_addition_function(5, 10) == 15
6 assert pypi_package_example.my_addition_function(15, 10) == 25
7 assert pypi_package_example.my_addition_function(-10, 10) == 0

If you are using PyCharm you can right-click on the tests folder and run the tests easily from within the IDE.

You can run PyTest from the command-line by just typing in pytest on the root folder. If that doesn’t work:

• Make sure PyTest is listed in requirements.txt and installed.

• Create an empty file called conftest.py in the root of your project folder.

1.7.2 Code Coverage

If you’d like to make sure that your unit tests cover all (or most) of your code, you can add the pytest-cov package.
Then you can run PyTest with the --cov parameter to see what percent of the project your tests cover:

pytest --cov=pypi_package_example tests/

You’ll get putput like this:

(venv) S:\Webserver\pypi_package_example>pytest --cov=pypi_package_examp
le tests/
========================= test session starts =========================
platform win32 -- Python 3.7.4, pytest-5.2.2, py-1.8.0, pluggy-0.13.0
rootdir: S:\Webserver\pypi_package_example
plugins: cov-2.8.1
collected 2 items

tests\test_my_addition_function.py . [50%]
tests\test_my_function.py . [100%]

----------- coverage: platform win32, python 3.7.4-final-0 -----------
Name Stmts Miss Cover
--

(continues on next page)

10 Chapter 1. Documentation

https://docs.pytest.org/en/latest/
https://pypi.org/project/pytest-cov/

PyPi Package Example Documentation, Release 1.0.0

(continued from previous page)

pypi_package_example__init__.py 4 0 100%

========================== 2 passed in 0.09s ==========================

This does not guarantee that your tests are good tests, just help you identify what parts of the code are at least run once
as part of the tests.

If you want an even nicer display, the Coveralls website allows you to display and navigate your code coverage
statistics. This is easy to add, by linking the Coveralls website to your GitHub account, turning on the project, and
updating the /.travis.yml file to send over the data.

1.7.3 Pre-Commit

If you want to make sure that everything is in order before you commit, the Pre-commit module will allow you to run
tests (andy anything else you’d like) whenever you try to commit with git. This helps encourage code quality.

1.8 Continuous Integration

There are many services that will automatically build your project on multiple platforms and run unit tests, code
formatting tests, and code coverage tests.

While you can create your own in-house build machine, there are companies that already have it set up. Some of them
include:

• Appveyor

• Jenkins

• TravisCI

1.8.1 Travis CI

In this example, we use TravisCI to do our builds. There is a YAML configuration file for TravisCI in the main file:

• .travis.yml

Here is the link so you can see the TravisCI for pypi_package_example build history on TravisCI.

Using Coveralls, you can see the code coverage of our tests:

• https://coveralls.io/github/pvcraven/pypi_package_example

You can add cool badges to your docs for these:

1.9 Getting Code Formatted Correctly

Code should follow a consistent standard to help readability. For Python this standard is defined in the style-guide
called PEP-8.

1.8. Continuous Integration 11

https://pypi.org/project/python-coveralls/
https://pypi.org/project/python-coveralls/
https://pre-commit.com/
https://www.appveyor.com/
https://jenkins.io/
https://travis-ci.org/
https://en.wikipedia.org/wiki/YAML
https://github.com/pvcraven/pypi_package_example/blob/master/.travis.yml
https://travis-ci.org/pvcraven/pypi_package_example
https://coveralls.io/github/pvcraven/pypi_package_example
https://travis-ci.org/pvcraven/pypi_package_example
https://coveralls.io/github/pvcraven/pypi_package_example?branch=master
https://www.python.org/dev/peps/pep-0008/

PyPi Package Example Documentation, Release 1.0.0

If you use PyCharm, you can use there hints. These appear as a yellow underline around the offending code, and on
the right margin. You can also scan an entire prject with the Code. . . Inspect Code menu option.

To scan for PEP-8 compliance on the command-line, you can use the flake8 module.

The Black will fix many issues for you automatically, rather than just telling you about them.

Using the pre-commit module along with flake8 and Black will make sure that code meets standards before allowing
it to be committed.

flake8 can also be added as part of the Continuous Integration and cause a broken build if standards aren’t met.

1.10 Versioning

1.11 Tips

You can install a package and use it from your development directory by pip install -e .

Get things set up with CookieCutter.

1.12 Example Directory Tree

• .github GitHub and GitHub Community

– ISSUE_TEMPLATE

* bug_report.md Bug Report Template

– PULL_REQUEST_TEMPLATE

* pull_request_template.md Pull Request Template

• doc Package Documentation Files

– _static

* css

– build

* html

– conf.py

– index.rst

– make.bat

12 Chapter 1. Documentation

http://flake8.pycqa.org/en/latest/
https://pypi.org/project/black/
https://pre-commit.com/
http://flake8.pycqa.org/en/latest/
https://pypi.org/project/black/
http://flake8.pycqa.org/en/latest/

PyPi Package Example Documentation, Release 1.0.0

• pypi_package_example

– __pypackages__ See PEP 582

– __init__.py

• tests Testing

• venv

• .gitignore Git

• .pre-commit-config.yaml Pre-Commit

• .travis.yml Travis CI

• CODE_OF_CONDUCT.md Code of Conduct

• conftest.py Testing

• CONTRIBUTING.md Contributing

• license.rst License

• make.bat Make File

• MANIFEST.in Use this to specify what should be in a source distribution

• README.rst Readme

• requirements.txt Requirements

• setup.py Setup File

1.12. Example Directory Tree 13

https://github.com/pvcraven/pypi_package_example/blob/master/.gitignore

PyPi Package Example Documentation, Release 1.0.0

14 Chapter 1. Documentation

CHAPTER 2

Application Programming Interface

2.1 API

pypi_package_example.my_addition_function(a: int, b: int)
Sample function that adds two integers.

Our documentation starts off with a one-line sentence. We can follow it up with multiple lines that give a more
complete description.

Parameters

• a (int) – First number to add.

• b (int) – Second number to add.

Returns The two numbers added together.

Return type int

Raises None

Then we can follow it up with an example:

Example

>>> result = my_addition_function(10, 15)
>>> print(result)

Note: This is just a silly example. Don’t really use this function to add numbers.

pypi_package_example.my_function()
Sample function that prints Hi

15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyPi Package Example Documentation, Release 1.0.0

16 Chapter 2. Application Programming Interface

CHAPTER 3

Notes

The official Python Packaging documentation:

https://packaging.python.org/

The official sample project:

https://github.com/pypa/sampleproject

17

https://packaging.python.org/
https://github.com/pypa/sampleproject

PyPi Package Example Documentation, Release 1.0.0

18 Chapter 3. Notes

Python Module Index

p
pypi_package_example, 15

19

PyPi Package Example Documentation, Release 1.0.0

20 Python Module Index

Index

M
my_addition_function() (in module

pypi_package_example), 15
my_function() (in module pypi_package_example),

15

P
pypi_package_example (module), 15

21

	Documentation
	Core Files and Directories
	Setup File
	Setup File In Detail

	Git
	GitHub and GitHub Community
	Readme
	Code of Conduct
	Contributing
	License
	Bug Report Template
	Pull Request Template

	Building and Deployment
	Requirements
	Setup
	Make File
	Build Directory
	Distribution Directory
	Additional Build Info

	Package Documentation Files
	Building API Docs From Code
	Read The Docs
	Files and Directories for Documentation

	Badges
	Testing
	PyTest
	Code Coverage
	Pre-Commit

	Continuous Integration
	Travis CI

	Getting Code Formatted Correctly
	Versioning
	Tips
	Example Directory Tree

	Application Programming Interface
	API

	Notes
	Python Module Index
	Index

