

Creating a Python Package

Getting started creating a Python package is very simple. Your project
only needs two files, and a directory.

Module vs. Package

A Python module is any file with Python code in it.
A Python package has multiple Python modules.
A package has a __init__.py file in a directory of Python modules.

Once you’ve got your package started, you can expand on it and add more
features, testing, documentation, and more.

This documentation shows how to build a modern Python package. If you
already have a package and want to know what each file does, see
Example Directory Tree.

The source for this example is at:

https://pypi-package-example.readthedocs.io/

Documentation

	Core Files and Directories
	Setup File

	Setup File In Detail

	Git

	GitHub and GitHub Community
	Readme

	Code of Conduct

	Contributing

	License

	Bug Report Template

	Pull Request Template

	Building and Deployment
	Requirements

	Setup

	Make File

	Build Directory

	Distribution Directory

	Additional Build Info

	Package Documentation Files
	Building API Docs From Code

	Read The Docs

	Files and Directories for Documentation

	Badges

	Testing
	PyTest

	Code Coverage

	Pre-Commit

	Continuous Integration
	Travis CI

	Getting Code Formatted Correctly

	Versioning

	Tips

	Example Directory Tree

Application Programming Interface

	API

Notes

The official Python Packaging documentation:

https://packaging.python.org/

The official sample project:

https://github.com/pypa/sampleproject

Core Files and Directories

There are only two required files, and one required directory:

	/pypi_package_example/ This is the main project directory
where all the Python source code goes.
The directory should be named the same as your package name. Check the
PyPi Package Index [https://pypi.org/] to make sure there isn’t a conflict before picking
your package name.

	/pypi_package_example/__init__.py This is the starting file for your
project. It is run when you import your package. It should not do much
processing, it should just load in all the functions and classes that you
plan on using in your project.

Setup File

	/setup.py or /setup.cgf. This specifies how your project is to be built, and other
meta information about the project. The /setup.py seems more common based on my
limited experience, but in 2016 PEP 518 [https://www.python.org/dev/peps/pep-0518/] was provisionally accepted which specifies a different
setup method, to be stored in a file called setup.cfg.

Setup File In Detail

When you run setup.py, you can get a full list of commands:

setup.py options

(venv) C:\pypi_package_example>python setup.py --help-commands
Standard commands:
 build build everything needed to install
 build_py "build" pure Python modules (copy to build directory)
 build_ext build C/C++ extensions (compile/link to build directory)
 build_clib build C/C++ libraries used by Python extensions
 build_scripts "build" scripts (copy and fixup #! line)
 clean clean up temporary files from 'build' command
 install install everything from build directory
 install_lib install all Python modules (extensions and pure Python)
 install_headers install C/C++ header files
 install_scripts install scripts (Python or otherwise)
 install_data install data files
 sdist create a source distribution (tarball, zip file, etc.)
 register register the distribution with the Python package index
 bdist create a built (binary) distribution
 bdist_dumb create a "dumb" built distribution
 bdist_rpm create an RPM distribution
 bdist_wininst create an executable installer for MS Windows
 check perform some checks on the package
 upload upload binary package to PyPI

Extra commands:
 bdist_wheel create a wheel distribution
 build_sphinx Build Sphinx documentation
 flake8 Run Flake8 on modules registered in setup.py
 compile_catalog compile message catalogs to binary MO files
 extract_messages extract localizable strings from the project code
 init_catalog create a new catalog based on a POT file
 update_catalog update message catalogs from a POT file
 alias define a shortcut to invoke one or more commands
 bdist_egg create an "egg" distribution
 develop install package in 'development mode'
 dist_info create a .dist-info directory
 easy_install Find/get/install Python packages
 egg_info create a distribution's .egg-info directory
 install_egg_info Install an .egg-info directory for the package
 rotate delete older distributions, keeping N newest files
 saveopts save supplied options to setup.cfg or other config file
 setopt set an option in setup.cfg or another config file
 test run unit tests after in-place build
 upload_docs Upload documentation to PyPI

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

The setup.py file itself can be pretty simple. As it is Python, you can keep adding onto it
as your project gets more complex and you need more customization. See the setup.py documentation [https://github.com/pvcraven/pypi_package_example/blob/master/setup.py]
for an idea of what you can do with that file.

setup.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

	#!/usr/bin/env python

from os import path
from setuptools import setup

VERSION = "1.0.0"

if __name__ == "__main__":

 # List of all the required packages.
 install_requires = [
 "arcade",
]

 # Grab the long description out of the README
 fname = path.join(path.dirname(path.abspath(__file__)), "README.rst")
 with open(fname, "r") as f:
 long_desc = f.read()

 # Call the setup function with our setup parameters.
 # This kicks off the build.
 setup(
 name="arcade",
 version=VERSION,
 description="Sample Python Package",
 long_description=long_desc,
 author="Paul Vincent Craven",
 author_email="paul.craven@simpson.edu",
 license="MIT",
 url="https://pypi-package-example.readthedocs.io/en/latest/",
 install_requires=install_requires,
 packages=["pypi_package_example"],
 python_requires=">=3.6",
 classifiers=[
 "Development Status :: 5 - Production/Stable",
 "Intended Audience :: Developers",
 "License :: OSI Approved :: MIT License",
 "Operating System :: OS Independent",
 "Programming Language :: Python",
 "Programming Language :: Python :: 3.6",
 "Programming Language :: Python :: 3.7",
 "Programming Language :: Python :: 3.8",
 "Programming Language :: Python :: Implementation :: CPython",
 "Topic :: Software Development :: Libraries :: Python Modules",
],
 test_suite="tests",
 package_data={"arcade": ["examples/images/*.png"]},
 project_urls={
 "Documentation": "https://pypi-package-example.readthedocs.io/en/latest/",
 "Issue Tracker": "https://github.com/pvcraven/pypi_package_example/issues",
 "Source": "https://github.com/pvcraven/pypi_package_example",
 },
)

Git

If you are using git version control, you need a list of files and directories
for git to ignore. This are saved in the .gitignore file.

GitHub maintains a great list of sample .gitignore files in there
collection of useful .gitignore templates [https://github.com/github/gitignore].

My .gitignore for Python typically looks like this: .gitignore [https://github.com/pvcraven/pypi_package_example/blob/master/.gitignore].

Note

Please teach your students not to check in SSH keys! Also make sure they don’t check in the results of a build.
Go over a typical .gitignore so they understand
why things should be, and should not be checked in.

GitHub and GitHub Community

If you host your files on GitHub, they have recommended supporting files for
documentation and building a community.

Readme

/README.md or /README.rst This file is shown at the bottom of your
GitHub page. It (along with most other files) can be in Markdown or Restructured
Text format. Look at the bottom of the pypi_package_example GitHub site [https://github.com/pvcraven/pypi_package_example] for
this website’s Read Me. You can click on the README.rst [https://github.com/pvcraven/pypi_package_example/blob/master/README.rst] to see this file,
and hit the ‘Raw’ button to see the source.

Badges - Badges are small graphics you can stick on your site to visually
list information about your project. The README is a good spot for them.
See this project’s README.rst [https://github.com/pvcraven/pypi_package_example/blob/master/README.rst]. For more info see Badges.

Code of Conduct

	/CODE_OF_CONDUCT.md Public projects should have a code of conduct. Add it
before you need one, not after. See GitHub’s Code of Conduct [https://help.github.com/en/github/building-a-strong-community/adding-a-code-of-conduct-to-your-project] suggestions,
and the Contributor Covenant [https://www.contributor-covenant.org/] for open source projects.

Contributing

	/CONTRIBUTING.md Encourage contributions to your project by telling
interested developers how to get started.

License

	/license.md Post a license for how people can use the software. See
Choose a License [https://choosealicense.com/] for help in selecting one. If other people contribute to
your project, they do so under the license you publish. Changing the license
on your project should involve the buy-in of all contributors. This isn’t easy
with a popular open-source project, so choose wisely the first time.

Bug Report Template

	/.github/ISSUE_TEMPLATE/bug_report.md When people report a bug, GitHub
will use the contents of this file as a template. This file, and similar ones
like pull_request_template.md have a few different places where GitHub will
look for them. I like putting them in .github rather than pollute the root directory.
You can also have multiple templates, depending on if it is a bug, feature
request, etc.

Pull Request Template

	/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md When developers create
a pull request a bug, GitHub will use the contents of this file as a template.

Building and Deployment

Requirements

	/requirements.txt This should be a simple list of every package required
to develop your project. The packages required to run the project go in
setup.py. This file makes it easy for automatic setup of virtual environment,
and automated builds.

	Python programs often use a virtual environment in a folder (usually named venv).
Python has a lot of other tools like pipenv and more trying to solve this same
problem. Last year, PEP 582 was approved that will use a __pypackages__ directory
that, if it exists, will be used instead of global packages.

Setup

	/setup.py This is one of the two required files.
You can use the setup file to build the project. For more info,
refer back to Core Files and Directories.

Make File

	/make.bat, make.sh, make.py There are so many different commands for building, testing,
and deployment, I like having a “make” file with a instructions to make the process easier.

Build Directory

	/build/ This is automatically created by setup.py when you build.

Distribution Directory

	/dist/ This is automatically created by setup.py when we build wheels.

Additional Build Info

	The command to build your project is python setup.py build

	bdist / wheels - If you have the wheel package [https://wheel.readthedocs.io/en/stable/] installed, you can create a
one-file distribution of your project. If the project is pure Python, that wheel
can work on any platform. If you’ve got platform-specific libraries, you can
make wheels for each platform. See Python’s packaging projects [https://packaging.python.org/tutorials/packaging-projects/] for more info.
The command to create a wheel is python setup.py bdist_wheel. This only works
if you have the wheel package installed.

	Manifest: https://packaging.python.org/guides/using-manifest-in/

	Twine - Once your project is packaged in a wheel,
you can upload it to the PyPi repository for other people to use.
This is done with the twine [https://github.com/pypa/twine] module. It is simple as:

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

	AWS - If you deploy on your own server, Amazon Web Services has a great Python-based command-line
interface as part of the awscli package [https://aws.amazon.com/cli/].

Package Documentation Files

Documenting your project is important if you want anyone else to use it.
Documentation is done using a markup language that is then converted into HTML
for your website.

To convert from a markup language to HTML we use a tool called Sphinx [http://www.sphinx-doc.org/en/master/].
Sphinx is a popular tool for creating web documentation for Python projects. It
is part of a larger group of tools known as Static Site Generators. You can see a list of
top static site generators at StaticGen [http://staticgen.com].

Markdown [https://www.markdownguide.org/basic-syntax] (.md) and RestructuredText [https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html] (.rst) - Static sites are normally written using
either markdown or restructured text. Markdown is more popular in the whole eco-system
of markup. RestructuredText is more popular for Python documentation. Restructured Text
also allows inclusion of external files, which is GREAT for maintaining code samples. See
examples of this at:

http://arcade.academy/examples

To get started with Sphinx, there’s a sphinx-quickstart [https://www.sphinx-doc.org/en/master/usage/quickstart.html] command that can build out
some of the files to get started. Personally, I find it easier to start with an
old project and copy/modify from there.

Building API Docs From Code

Sphinx can pull documentation stored in comments from
Python files. If the Python code looks like this:

Documented Python Code Listing

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	def my_function():
 """
 Sample function that prints Hi
 """
 print("Hi")

def my_addition_function(a: int, b: int):
 """
 Sample function that adds two integers.

 Our documentation starts off with a one-line sentence. We can follow it up
 with multiple lines that give a more complete description.

 :param int a: First number to add.
 :param int b: Second number to add.

 :return: The two numbers added together.
 :rtype: int
 :raises: None

 Then we can follow it up with an example:

 :Example:

 >>> result = my_addition_function(10, 15)
 >>> print(result)

 .. note::
 This is just a silly example. Don't really use this function to add
 numbers.

 """
 return a + b

Then, in the restructured text file add code like the following:

.. automodule:: pypi_package_example
 :members:
 :undoc-members:
 :inherited-members:
 :show-inheritance:

And finally get output that looks like this: API

Note how it also links to the source of the code!

Read The Docs

Do you have an open-source project and don’t want to spend a lot of time
hosting a website and keeping everything up-to-date? ReadTheDocs [https://readthedocs.org/] will
take any GitHub project and automatically build a website for you
using Sphinx. They will inject some ads into it to help pay
for it.

ReadTheDocs supports custom URLs. They also support webhooks that
will auto-build the documentation every time you push a new version
to GitHub.

Files and Directories for Documentation

	/doc/ Put your documentation in this directory

	/doc/index.rst This is your main landing page

	/doc/_static This directory will be included in your main project. I use it
for a custom css file.

	/doc/images It is a good idea to keep images separate from content.

	/pypi_package_example/examples If you want example code, I suggest putting
it in a subdirectory to your project. Don’t put it in the doc directory. This
makes it easy to run your example with a command like:

python -m pypi_package_example/examples/my_example

Badges

Badges are a fun, visual way of showing information about your projects. Here
are some badges for this project:

[image: Pull Requests Welcome]
 [http://makeapullrequest.com][image: first-timers-only Friendly]
 [http://www.firsttimersonly.com/][image: _images/pypi_package_example.svg]
 [https://travis-ci.org/pvcraven/pypi_package_example][image: _images/badge.svg]
 [https://coveralls.io/github/pvcraven/pypi_package_example?branch=master][image: GitHub commit activity]You can get the source to copy/paste into your own project from
ShieldsIO [https://shields.io/]. This website has TONS of badges to look through and see
what fits your project.

Testing

PyTest

There are several testing frameworks that exist for helping
with unit tests. One of the most popular for Python is
PyTest [https://docs.pytest.org/en/latest/]. PyTest makes it easy to write and run unit tests.

Typically I create a directory called “tests” for all of the
unit tests. I put the “tests” directory in my root folder, but
if you want to run tests as part of the package once it has been
installed, then you’ll need to include it as a subdirectory in the
folder with the source code.

Files that contain tests should start with test_ and contain
functions that start the same way:

/tests/test_*.py

An example test file:

test_my_addition_function.py

	1
2
3
4
5
6
7

	import pypi_package_example

def test_my_addition_function():
 assert pypi_package_example.my_addition_function(5, 10) == 15
 assert pypi_package_example.my_addition_function(15, 10) == 25
 assert pypi_package_example.my_addition_function(-10, 10) == 0

If you are using PyCharm you can right-click on the tests folder
and run the tests easily from within the IDE.

You can run PyTest from the command-line by just typing in pytest on the
root folder. If that doesn’t work:

	Make sure PyTest is listed in requirements.txt and installed.

	Create an empty file called conftest.py in the root of your
project folder.

Code Coverage

If you’d like to make sure that your unit tests cover all (or most) of your
code, you can add the pytest-cov [https://pypi.org/project/pytest-cov/] package. Then you can run PyTest with the
--cov parameter to see what percent of the project your tests cover:

pytest --cov=pypi_package_example tests/

You’ll get putput like this:

(venv) S:\Webserver\pypi_package_example>pytest --cov=pypi_package_examp
le tests/
========================= test session starts =========================
platform win32 -- Python 3.7.4, pytest-5.2.2, py-1.8.0, pluggy-0.13.0
rootdir: S:\Webserver\pypi_package_example
plugins: cov-2.8.1
collected 2 items

tests\test_my_addition_function.py . [50%]
tests\test_my_function.py . [100%]

----------- coverage: platform win32, python 3.7.4-final-0 -----------
Name Stmts Miss Cover
--
pypi_package_example__init__.py 4 0 100%

========================== 2 passed in 0.09s ==========================

This does not guarantee that your tests are good tests, just help you identify
what parts of the code are at least run once as part of the tests.

If you want an even nicer display, the Coveralls [https://pypi.org/project/python-coveralls/] website allows you to display
and navigate your code coverage statistics. This is easy to add, by linking
the Coveralls [https://pypi.org/project/python-coveralls/] website to your GitHub account, turning on the project, and
updating the /.travis.yml file to send over the data.

Pre-Commit

If you want to make sure that everything is in order before you
commit, the Pre-commit [https://pre-commit.com/] module will allow you to run tests
(andy anything else you’d like)
whenever you try to commit with git. This helps encourage
code quality.

Continuous Integration

There are many services that will automatically build your project on multiple
platforms and run unit tests, code formatting tests, and code coverage tests.

While you can create your own in-house build machine, there are companies that
already have it set up. Some of them include:

	Appveyor [https://www.appveyor.com/]

	Jenkins [https://jenkins.io/]

	TravisCI [https://travis-ci.org/]

Travis CI

In this example, we use TravisCI to do our builds. There is a YAML [https://en.wikipedia.org/wiki/YAML] configuration
file for TravisCI in the main file:

	.travis.yml [https://github.com/pvcraven/pypi_package_example/blob/master/.travis.yml]

Here is the link so you can see the TravisCI for pypi_package_example [https://travis-ci.org/pvcraven/pypi_package_example]
build history on TravisCI.

Using Coveralls, you can see the code coverage of our tests:

	https://coveralls.io/github/pvcraven/pypi_package_example

You can add cool badges to your docs for these:

[image: _images/pypi_package_example.svg]
 [https://travis-ci.org/pvcraven/pypi_package_example][image: _images/badge.svg]
 [https://coveralls.io/github/pvcraven/pypi_package_example?branch=master]

Getting Code Formatted Correctly

Code should follow a consistent standard to help readability. For Python
this standard is defined in the style-guide called PEP-8 [https://www.python.org/dev/peps/pep-0008/].

If you use PyCharm, you can use there hints. These appear as a yellow underline
around the offending code, and on the right margin. You can also scan an entire
prject with the Code…Inspect Code menu option.

To scan for PEP-8 compliance on the command-line, you can use the flake8 [http://flake8.pycqa.org/en/latest/] module.

The Black [https://pypi.org/project/black/] will fix many issues for you automatically, rather than just telling
you about them.

Using the pre-commit [https://pre-commit.com/] module along with flake8 [http://flake8.pycqa.org/en/latest/] and Black [https://pypi.org/project/black/] will make sure that
code meets standards before allowing it to be committed.

flake8 [http://flake8.pycqa.org/en/latest/] can also be added as part of the Continuous Integration and cause a
broken build if standards aren’t met.

Versioning

Tips

You can install a package and use it from your development directory by
pip install -e .

Get things set up with CookieCutter.

Example Directory Tree

	[image: folder] .github [image: arrow] GitHub and GitHub Community

	[image: folder] ISSUE_TEMPLATE

	[image: file] bug_report.md [image: arrow] Bug Report Template

	[image: folder] PULL_REQUEST_TEMPLATE

	[image: file] pull_request_template.md [image: arrow] Pull Request Template

	[image: folder] doc [image: arrow] Package Documentation Files

	[image: folder] _static

	[image: folder] css

	[image: folder] build

	[image: folder] html

	[image: file] conf.py

	[image: file] index.rst

	[image: file] make.bat

	[image: folder] pypi_package_example

	[image: folder] __pypackages__ [image: arrow] See PEP 582

	[image: file] __init__.py

	[image: folder] tests [image: arrow] Testing

	[image: folder] venv

	[image: file] .gitignore [https://github.com/pvcraven/pypi_package_example/blob/master/.gitignore] [image: arrow] Git

	[image: file] .pre-commit-config.yaml [image: arrow] Pre-Commit

	[image: file] .travis.yml [image: arrow] Travis CI

	[image: file] CODE_OF_CONDUCT.md [image: arrow] Code of Conduct

	[image: file] conftest.py [image: arrow] Testing

	[image: file] CONTRIBUTING.md [image: arrow] Contributing

	[image: file] license.rst [image: arrow] License

	[image: file] make.bat [image: arrow] Make File

	[image: file] MANIFEST.in [image: arrow] Use this to specify what should be in a source distribution

	[image: file] README.rst [image: arrow] Readme

	[image: file] requirements.txt [image: arrow] Requirements

	[image: file] setup.py [image: arrow] Setup File

API

	
pypi_package_example.my_addition_function(a: int, b: int)

	Sample function that adds two integers.

Our documentation starts off with a one-line sentence. We can follow it up
with multiple lines that give a more complete description.

	Parameters

	
	a (int [https://docs.python.org/3/library/functions.html#int]) – First number to add.

	b (int [https://docs.python.org/3/library/functions.html#int]) – Second number to add.

	Returns

	The two numbers added together.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	None

Then we can follow it up with an example:

	Example

	>>> result = my_addition_function(10, 15)
>>> print(result)

Note

This is just a silly example. Don’t really use this function to add
numbers.

	
pypi_package_example.my_function()

	Sample function that prints Hi

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pypi_package_example	

Index

 M
 | P

M

 	
 	my_addition_function() (in module pypi_package_example)

 	
 	my_function() (in module pypi_package_example)

P

 	
 	pypi_package_example (module)

 _static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/file.png

_images/folder-invoices--v2.png

nav.xhtml

 Table of Contents

 		
 Creating a Python Package

 		
 Core Files and Directories

 		
 Setup File

 		
 Setup File In Detail

 		
 Git

 		
 GitHub and GitHub Community

 		
 Readme

 		
 Code of Conduct

 		
 Contributing

 		
 License

 		
 Bug Report Template

 		
 Pull Request Template

 		
 Building and Deployment

 		
 Requirements

 		
 Setup

 		
 Make File

 		
 Build Directory

 		
 Distribution Directory

 		
 Additional Build Info

 		
 Package Documentation Files

 		
 Building API Docs From Code

 		
 Read The Docs

 		
 Files and Directories for Documentation

 		
 Badges

 		
 Testing

 		
 PyTest

 		
 Code Coverage

 		
 Pre-Commit

 		
 Continuous Integration

 		
 Travis CI

 		
 Getting Code Formatted Correctly

 		
 Versioning

 		
 Tips

 		
 Example Directory Tree

 		
 API

_static/ajax-loader.gif

_images/long-arrow-right.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

